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A generalized wreath product group is developed in the root-to-root product 
formalism for the enumeration of stereo and position isomers of polysubstituted 
organic compounds. The methods expounded here are used for enumerating the 
NMR signals of polysubstituted organic compounds. 
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I. Introduction 

Extensive expositions of the isomer enumeration methods can be found in the 
review Dipers of Rouvray [1, 2]. The problem of enumerating isomers essentially 
reduces to finding what is known as the cycle index of a permutation group [3] and 
then obtaining a generating function for isomers using a theorem of Polya [3]. Read 
[4] stated that a method is yet to be developed for the enumeration of stereo-isomers 
of polysubstituted organic compounds. Read [5] recently enumerated the stereo- 
isomers of certain specific compounds like C,Hz,XY, where X and Y are attached to 
the end carbons. We report here a general method for the enumeration of stereo and 
position isomers of polysubstituted organic compounds containing any number of 
functional groups. The group of permutations for the enumeration of isomers at 
room temperature should contain the point group operations and the permutations 
induced by any additional internal degrees of freedom. Leonard [6, 7] enumerated 
the isomers of nonrigid cyclohexane molecules by including the permutations 
induced by a ring-flip operator in the permutation group of the rigid molecule. 
Davidson [8] investigated the three-fold rotors in alkanes, two-fold rotors in 
polyphenyls and certain higher-fold rotors in metal complexes from the standpoint 
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of their cycle indices with what is known as the wreath product also referred to as the 
Kranz group. The Kranz group or wreath product is a special case of the generalized 
wreath product that we develop here. Robinson et al. [9] enumerated the chiral, 
achiral and the monosubstituted alkanes. Balaban et al. [10] obtained the cycle 
index of H-labelled adamantanes using Polya's result [3] for the cycle index of the 
wreath product group. 

In Sect. 2 we formulate a method for the enumeration of isomers of p01ysubstituted 
organic compounds. In Sect. 3 the generalized wreath product method in the 
molecular stereo product or root-to-root product formalism is used for enumerat- 
ing the N M R  signals ofpolysubstituted organic compounds. In the ensuing sections 
we assume an acquaintanceship with the elementary concepts related to Polya's 
theorem [3]. However, we give sufficient definitions to make this a self-contained 
paper. The paper is fortified with a number of examples with the object of 
smoothening one's encounter with the generalized wreath product. 

2. Isomers of Polysubstituted Organic Compounds 

2.1. Mathemat ical  Formulation 

Every molecule can be assigned a graph, the vertices of the graph representing the 
atoms, and the edges representing the bonds. The vertices that correspond to the five 
carbon atoms of the graph shown in Fig. 1, are distinguishable from the other 

Fig. 1. A molecular stereograph. The vertices that bear the 
numbers 1, 2, 3, 4, and 5 are the roots. The other vertices are 
chemically unspecified 

vertices in the sense that these vertices are chemically specified. In this example they 
are specified as carbon atoms. The other vertices of degree 1 (valency 1) are 
unspecified. Such distinguishable vertices of a graph are called the roots. Thus, the 
vertices corresponding to the five carbon atoms are the roots of the chemical graph. 
Usually a graph does not imply any spatial symmetry; it depicts how the various 
atoms in the molecule are connected. Here we extend this concept to encompass the 
spatial symmetry. The molecular stereograph is defined as the graph that cor- 
responds to the given molecule and which also includes all the chemical information 
as regards to the spatial symmetry of the molecule. Then, enumerating stereo- 
isomers will correspond to the non-equivalent ways of mapping the unspecified 
vertices of the molecular stereograph into a certain set of atoms or functional groups 
under a group action. 
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Let F be the molecular stereograph of  the given molecule M. Let the induced 
subgraph of the roots of  F be Q. All the vertices of the same degree in Q will be 
grouped in the same set. Thus, the vertices of  Q can be partitioned into mutually 
exclusive sets. For example, the roots of  the molecular stereograph shown in Fig. 1, 
can be partitioned into the sets Izl = {1, 3, 5}, I12 = {4} and Y3 = {2}. Every vertex in 
Q is assigned an unlabelled diagram which we shall call a type. We can assign to each 
primary carbon in the stereograph Q, a type consisting of three chemically 
unspecified vertices and a specified root;  with a secondary carbon a tom a type 
consisting of two unspecified vertices and a root can he associated; to a tertiary 
carbon a type with a single vertex and a root can be assigned. Let the type assigned 
to the elements of  the set Yi be T i. For the molecular stereograph shown in Fig. 1, Q, 
T~, T2 and T3 are shown in Fig. 2. 

3 

! 

5 
(? 

Z2 
Fig. 2. The Quotient graph Q and the 
various types of the molecular stereo- 
graph shown in Fig. l 

% 

Even though types are unlabelled diagrams, in order to realize the transformations 
of  group operations let us label the vertices of a type in a particular standard way. In 
the latter portion of the paper, we will give a precise definition of a type. Now, any 
molecular stereograph F can be constructed by attaching each of the elements of Yi 
and the root  of  a copy of  the type Ti. Symbolically, 

r= Q(y~r-~ r~,) 

where the symbol y i , ~  T~r denotes the root- to-root  isomorphism between an 
element y~, e Yi and the root of  a copy of the tape Tz. The product thus formulated 
between the roots o f f  and the types can be called a molecular stereo-product or root- 
to-root product. 

To enumerate the stereo-position isomers at room temperature, we look at the group 
G of all proper rotations of the point group corresponding to the stereograph Q. At 
room temperature the carbon-carbon internal rotations are present. Such internal 
rotations permute the chemically unspecified vertices of  the primary carbon atom. 
However, they do not permute the chemically unspecified vertices of the secondary 
and tertiary carbon atoms. Consequently, while constructing the molecular stereo- 
product, we need not attach an identical copy of the type T 1 to the elements of the 
set Y1 ; rather we may attach an isomorphic copy (a copy of I"1, that is a permutat ion 
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of the chemically unspecified vertices of Tx induced by certain isomorphisms) to the 
elements of Y1 in Q. Such isomorphic copies of a type that will be used in the 
construction of the molecular stereo-product will be called the representatives of the 
corresponding type. Let us observe that in the preceding example, however, we have 
to attach identical copies of T2 and T 3 to the elements of Yz and 113 respectively. 
Hence, we envisage, in general, a group Hi acting on the type T~. Indeed, the objects 
that isomorphisms generate as a result of their action on T~ are the various 
representatives that we use in the construction of the molecular stereo-product. For 
example, in the process of enumerating the stereo-position isomers, the group H1 
acting on T1 is C3, consisting of three elements. The group H 2 ,  acting on T z is E 2 . 

(Hereafter, let E, stand for the identity group acting on n elements.) The group H3 
acting on T~ is El.  To enumerate the position isomers one considers the graph F 
(instead of the molecular stereograph) of the molecule. The group G acting on the 
quotient graph Q of the root-to-root product, is the automorphism group of the 
graph Q which is defined as the set of those permutations of the vertices of the graph 
Q that preserve the adjacency. Alternatively, the automorphism group of the graph 
Q consists of those permutations of the vertices of Q, whose permutation matrices 
P's satisfy the following property: 

p A p - l = A  

where A is the adjacency matrix of the graph Q. For example, the automorphism 
group of the graph Q, shown in Fig. 2, is $2(5) which denotes the symmetric group 
consisting of 2 ! permutations acting on 5 elements. (In general, let S,(m) denote the 
symmetric group consisting of n! elements, acting on m elements.) The per- 
mutations are (1)(2)(3)(4)(5) and (13)(2)(4)(5). It is interesting that Quintas and 
Yarmish [11, 12] used the carbon automorphism group to enumerate the chiral 
alkanes. Now, since in the position isomer formulation stereo-isomers are 
equivalent, we allow all the possible permutations of the chemically unspecified 
vertices attached to the same carbon atom. This can be expressed as groups Hi 
=$3(3),/ /2 =$2(2) and H3 = El.  Subsequently, we transfer the group actions G on 
Q, HI on T~, etc., into a single group H acting on F. The group of all such 
permutations acting on F that includes all the "internal permutations" can be 
obtained by composing the group G with the groups H ~ , / / 2 . . .  in a generalized 
manner. A special case of such a composition, namely, the composition of a group G 
with a group H1 is the well-known Kranz group or wreath product. Therefore, it is 
appropriate to call the generalized composition of the group G with several groups 
H1, H: . . .  the generalized wreath product. It may be denoted as 

H= G[Ha, 112, H3 . . .] .  

In the next section we obtain a theorem for the cycle index of H. Before we do that, 
let us investigate the nature of H. We start with certain notations and terminologies. 
Let Xi, be a representative that is isomorphic to T~ and which will also be attached to 
the element Yir ~ Yi" ( r=  1, 2 . . . .  I Y~I). Thus, another convenient way of looking at 
the set Y~ is a set Y'~ of all representatives that are in one-to-one correspondence with 
the elements of the set Y~. Let us observe that I Y~I = I Y'~I. N o w ,  the root-to-root 
isomorphism defined between an element y~ in Y~ and Ti~ can be transferred to 
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various representatives. Thus, we conceive of  an isomorphism Pi, between an Z~, 
and Ti. In symbols, 

P i t :  X i r - ~ "  T i .  

It can be seen that the isomorphism thus defined is an equivalence relation. The 
isomorphism equivalence class is referred to as a type. This is the definition of a type 
that we promised to give. 

Lemma 1: For any element h in H if hX~,= Xjrr then i =j.  

Proof: This is a consequence of the fact that either G is the point group of the 
stereograph Q or G is the automorphism group of the graph Q. In the former case, 
the elements of G being symmetry operations, they do not permute the vertices of  
different degrees into each other. In the latter case, the automorphism group, by 
definition, preserves the adjacency; consequently, the elements of G, and therefore 
those of H do not permute the elements of different degrees in Q. 

Lemma 2: Every dement  h in H induces a permutation on Q. 

Proof: H consists of the generalized composition of all the permutations of Q and 
those of various types. As a result, in particular, every element in H induces a 
permutation on the elements of Q. 

To every representative X~, let a group G~ be assigned akin to the group associated 
with every type. Then, it follows that G~-~ H,.. This is a direct consequence of the 
isomorphism between Xi, and Ti. 

Lemma 3." Let 9 ~ G, gi, ~ Gi and let m i = I Yil. Then, there exists a 1-1 correspondence 
between an element h ~ H and an ordered (t + 1)-tuple s of the form (where t is the 
number of types) 

S = ( g  ; g l  1 ,  g l  2 ,  . �9 �9 , g l m l  ; g 2 1 ,  g 2 2  - . . f f 2 m 2  "~ �9 �9 " ; g t  1 ,  g t 2  . - - g t m t ) "  

Proof: The lemma will be proved by constructing an s given an h and vice versa. A 
given h ~ H induces a g ~ G by Lemma 2. Hence the first component of  s is 
determined. We define 9z, for each i and r = 1, 2 . . . .  m~ as 

g i r  = P i t "  ( h  ]Sir) "P/71 

where h Ixi, denotes h restricted to X~,. By lemma 1 hXi, = Xi,,. This construction of 
9~, can be pictorially depicted as follows: 

X/~ h X::, = hXi, 

ri 
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Therefore, every ( t+l ) - tuple ,  s of the form (ff;glt,g12"..g~ml; . ' ' ;  
gtl, gt2 . . .  gtm) is determined. Conversely, given an s we can construct an h 
by finding that Yz,, which is gyz, and defining. 

h I~,, = (P,;,~).  (gi,)" (Pit). 

Thus the correspondence is one-to-one. 

Example. Let us illustrate the preceding construction by the nonrigid ethane 
molecule, shown in Fig. 3. 

1 

2 3 

1 3 

2 3 2 1 

Pl1=(1)(2)(3)~ (/~ J2=(13)(2) 
1 

~ 3 - ~  Fig. 3. The nonrigid ethane molecule. 
Construction of an element of the correspond- 

2 3 ing wreath product 

It can be seen from Fig. 3 that h Ix11 =(13)(2) and h 1x12=(1)(23). Therefore 

glt =P~2h IXH P ~  =(1)(2)(3) =e '  ~ C3. 

Similarly, 

g12=Pll h tx12 PI~ =(123)=c3  ~ C3. 

Hence, s is determined as (c2 ; e', c3). Conversely, given this s, it can be shown that 
h [x~l and h [xl~ are the same as the ones that we started with. 

2.2. The Cycle lndex of the Generalized Wreath Product 

The cycle index of  a permutation group G is defined [3] as: 

1 - -  b b 
PG(S1, S 2 . . .  )=~G~ s $1~$22"" " 

I I geG 

where S~S]  2 . . .  is a representation of the cycle structure of a typical permutation 
g e G having b~ cycles of length 1, b2 cycles of length 2 and so on. The S-variables are 
just dummy symbols. It is possible to express the cycle index of the generalized 
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wreath product in terms of the cycle indices of the composing groups. Harary [13] 
obtained this using the Robinson-Harary generalized composition theorem [14]. 
However, following the Wright's procedure [15] which seems to be more 
fundamental, theorem 1 that we state below can be proved. Nevertheless, 
modifications have to be made in Wright's procedure since for our purpose the 
theorem has to be proved in the root-to-root product, whereas Wright proves it in 
the lexicographic product. 

Define a polynomial Z o with the dummy variables Su's as follows. 
1 

It'll g6G i " 

where cu(y) denotes the number of j-cycles of 9 in the set Y~. ZQ can be called the 
cycle index of the (stereo)9raph Q. Let Z~(St, $2 , . . .  ) denote the cycle index of  the 
group H i. Define Z u as: 

Z,~ = Z; (S~ ~ S~) 

where the symbol Sk ~ Skj  stands for the operation of replacing every cycle of length 
k by a cycle of length kj. (kj denotes the product.) 

Theorem i [16] : The cycle index of H, the group for isomer enumeration, is 

zH = ze(su-* zi ). 

Z~ is obtained by replacin 9 every S u in ZQ by the cycle index Z u. For a proof in the 
molecular stereo product or root-to-root product see [16]. 

Example: We now illustrate the theorem by constructing the cycle index of the 
group for the stereo-position isomers and the position isomers of the molecule 
shown in Fig. 1. The point group which corresponds to Q is E5 and H a = C3, H2 
= E 2 a n d / / 3  = E~. By the definition of Z e, 

zQ:s ls21&l. 

The various Zu's are given as follows: 

Z 1 1  1 3 = ) -  ( S  1 -~ 2 S 3 )  ; Z 21  = 8 2 ;  Z 3 1 = S  1 . 

Hence, by theorem 1, the cycle index of the group for isomer enumeration is: 

Z,~= Ze(Sij~ Zij)= S~. {~(S~ + 2S3)} 3 (1) 

To enumerate the position isomers we let G be the automorphism group of Q, and as 
shown earlier it is S~(5). Thus, 

1 3 Ze= 2( $11S21S31 Jr Sl l S12S21S31). (2) 

The groups Ht ,  H 2 and H3 are $3(3), Sz(2) and E 1 respectively. As a result, it can be 
seen that 

Z11  1 3 =g(Sx+2S3+3S1Sz) ; Z21  1 2 --~($1 +$2); 
Z31 =$1 ;  Z~2=~($3+2S6+3S2S~). 
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By theorem 1, 

Z a :  �89 + 2S3 + 3S1Sj} 3 {�89 + S J } S I  

+ {{(S~ + 2S6 + 3S2S~)} {{(St a + 2S3 + 3Sl $2)} {�89 + $2)}S1] (3) 

Example: As a second example exemplifying the significance of theorem 1 and the 
flexibility of the generalized wreath product consider the molecule shown in Fig. 4. 
Suppose that one wishes to obtain the stereoisomers of the corresponding 
polysubstituted compounds, but with the restriction that the chemically unspecified 
vertices of the "ethyl-tail" are not to be projected in space. Then all that one has to 
do is to construct the cycle index of the generalized wreath product of the group G 
= C3 with the groups H1 = C 3 , / / 2  =$3(3) and H a =$2(2) in the appropriate root- 
to-root product. ZQ for this problem is given by Eq. (4). 

1 3 ZQ=~(SllS21S31 +2S13S21S31 ) (4) 

By theorem 1 
1 3 Z H :  ~v2 [(S 1 + 2S3)3(S 2 + $2)(S~ + 3S~$2 + 2S3) 

+ 18(S 3 + 2 S 9 ) ( S  2 + S 2 ) ( S i  3 + 3SIS2 + 2S3)  ] (5) 

4 

6 

2 

, / <  
4 6 

5 

Fig. 4. A chemical graph on six vertices and its stereoprojection 

2.3. Enumeration of  Isomers 

Let D be the set of chemically unspecified vertices of the (stereo) graph F. Let R be a 
set o f / a toms  or functional groups. Each element Vj ~ R is assigned a weight ~j. The 
weights can be formal symbols but they must come from a commutative ring in 
order that the mathematical manipulation with the weights makes sense. Let J be 
the set of all maps from D to R. Two elements f l  ,f2 ~ ~ are said to be equivalent if 
there exists a n ~ GEH1, H2 �9 �9 .] such that 

f i(d) =f2(~d) 

for every d e D. Clearly, the relation thus defined on the set of functions is an 
equivalence relation. Thus, the generalized wreath product divides the set f f  into 
equivalence classes. Let us define the weight of a function as the product of the 
weights of the corresponding images. Let the weight ~j be assigned to the functional 
group 0; then the map corresponding to a molecule of the formula 
Cn(tl)bl(t2)b2... (tl)bt will have the weight 

w =  tz. 
Let ~ denote the subset of Y containing all those maps with the same weight w. 
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Polya [-3] called each equivalence class apattern. Each pattern is in fact an isomer. 
The weight of a pattern is defined as the weight of any element in the pattern. The 
sum of the weights of the patterns is called the pattern inventory. 
Theorem 2 [-Polya] : The pattern inventory is given by 

Therefore, the coefficient of e~1c42.., c~)s in the pattern inventory gives the number 
of isomers of the molecule C,(t,)bl(t2)b2. �9 �9 (tl)bz- Since in this paper, patterns and 
isomers are equivalent, we use the terminologies pattern inventory and isomer 
inventory equivalently. Let us denote the pattern inventory by P(cq, e2 �9 �9 �9 cq) ife's 
are the weights of the elements of the set R. Let N(c~c~ 2 . . .  cq b~) stand for the 
eoefficient of ~ c ~  2 . . .  c~ ~ in the pattern inventory. In many situations the pattern 
inventory changes depending upon the parity of certain variables. If u is the variable 
whose parity changes the pattern inventory, we indicate this by " 

P,  ( ~ 1 , ~ 2 - ' . )  or P , + ( c q , ~ 2 . . . )  

where the negative sign is used if the parity is odd and the positive sign is used if the 
parity is even. 

2.4. Isomers of Linear Polysubstituted Alkanes 
In this section we outline a general method of the enumeration of stereo, optical and 
position isomers of polysubstituted linear alkanes. In 2.4.1 we enumerate the stereo- 
position isomers and enantiomers. In 2.4.2 the position isomers are enumerated. 

2.4.1. Stereo-Position Isomers and Enantiomers 

Let n be the number of carbon atoms. We assume here that the internal rotations are 
present. When n is odd the C2 axis passes through the central carbon atom. The 
chemically unspecified vertices attached to this carbon transform into each other 
under the permutations induced by the C2 axis. Accordingly, the central carbon 
should be treated as a special case, The cycle index of the corresponding generalized 
wreath product is therefore the same for both the parities of n. The cycle index is 
given by (6). 

Z lt~2n+2j_A~Zn 1~ •177 H-- 181,~ "- r~  ~3 " ~ ~  ~  + 6S~- 2S6) (6) 

By theorem 2, the pattern inventory is given by (7). 

1 f/v~l "~2n+2 / l  ~2n-l l/1 
P(oq, . , 0q) =Tg~,~,,,_ %, .. ~,) +4~ ~= ~,) ~ ~= o~ 3) 

( ~ 1 ) 2 n - 4 (  =~1 )2 ( ~ 1 ) n + X  +4  7i ~3 + 3 c~ 
i i i 

+ 6Q__~1 \ n - 2 / l  

Example: Isomers of C3H6X 2. 
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X H 

X ,, / \ H H �9 H H 
H H 

H X H H 

H H �9 H H 
H H 

X X 

H H 
Fig. g. The five isomers of C3H6X2. The optically active isomers carry asterisks 

The number of isomers of C 3 H 6 X  2 can  be obtained by putting n = 3 in (7) and 
collecting the coefficient of ~1c~2,6 2 which is 

The five isomers are shown in Fig. 5. 

In particular, when the set R has two elements, namely the hydrogen atom and a 
functional group X, and further if the weight of the hydrogen atom is I and that of X 
is ~, (7) simplifies to (8). 

P(1, e) = ~ { ( 1  +~)2n+2 +4(1 + 002n- 1(1 + C~3) + 4 ( l  + ~)2n-4(1 +~3)2  

+3(1 + ~2).+ 1 +6(1 + c<2)"- ~(1 + c<6)} (8) 

The coefficient of  ek in (8), representing the number of isomers of CnHzn + 2-kXk is 
given by (9) if k is odd and by (I0) if k is even. 

k 1F/2n+ )+ t k - 3 )  

4 f 2 n -  4"~ 8 / 2 n -  4"~ 2 n - 4  

k 1 C~ k n + l  n--2  

where Nk-(c~ k) in (10) is given by (9). 
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To enumerate the optical isomers, one includes a plane of symmetry in the 
generalized wreath product and subtracts the isomer inventory obtained with the 
plane from the isomer inventory obtained without the plane. The coefficient of 
~1e~2.. .  e~ z gives the number of dl-pairs. When one includes a plane of symmetry, 
the cycle index of the resulting generalized wreath product is given by (11) ifn is odd 
and by (12) if n is even. 

Z n  1 2 n 2 n -  3 = ~ 6 ( 1 8 Z H + 1 2 S a S z + 6 S a S 2  $ 6 )  (11) 

Z,+ = 3~6(18ZH + 3S~ +~ + 6S6S~ - 2 + 9S~S~) (12) 

where Z~ is given by Eq. (6). Let E(et, o{ 2 . . . e l )  stand for the generating function 
for enantiomer pairs. Then enantiomer inventories are given by (13) and (14) for 
odd and even parities of n respectively. 

E,-(el ,  e2 �9 . . ,  el)= 18P(el, e 2 . . . ,  e l )  - -  12 ei e 

2 n 

E,+(et, e 2 . . , e z ) = l [ 1 8 P ( c q , e 2 , . . . e , ) - 3 ( ~ e ~ ) " + x - 9 ( ~ e i )  ( ~ e  z) 

where P(el,  e 2  " ' '  O{1) is given by Eq. (7). 

Example: Enantiomer-pairs of C3H6X 2. 

6 2 This is Let n=3 in (13) and collect the coefficient of e~ez. 

~1 [90-12- -12(2  3361)-61 =1" 

This d/-pair is shown in Fig. 5 with asterisks. In the special case when the set R has 
two elements, namely, the hydrogen atom and a group X, the coefficient of e k in (13) 
or (14) is shown below. There are four cases depending upon the parities of both n 
and k. They are indicated by appropriate suffixes. 

N _ k _ ( e k ) = l I 1 8 N  k (ek) _24((k n ) 12( n - 3  ~ 12( n - 3  ~ 
- 1) /2 / -  \ ( k -  1) /2 / -  \ ( k - 7 ) / 2 ] J  

(15) 

N, k+(ek)=l[18Nk+(C~k)--12((k n ~ 12( n ~ 6(n--3~ 
-2)/2,I- \k/2/- \ k/2 ,/ 

- 6 (  n - 3  ~ 6(  n - 3  " ] - 6 (  n - 3  ~] (16) 
\(k - 2)/2] - \(k - 6)/2// \(k - 8)/2 }J 
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1 9 n N'+k+(~k)=~[18Nk+(~k)--9(k~2)-- ((k- 2)/2) 

3\ k12 l -  \ k12 ) \(k-6)lZJA 
where Nk-(7 k) and Nk+(c~ k) are given by (9) and (10) respectively. 

2.4.2. Position Isomers 
To enumerate the position isomers let H1=$3(3), Hz=S2(2) and H3=E1. The 
automorphism group for a linear n-carbon chain is S2(n). 

Let Zc be 

Zc = ~ n 2 32'n+6sn2--2-m+432mgn2--2-mg2+9Sl>"+2S2"-m 
m = 0  

2m+3~,-2 = . (19) +4S1 02 S3+12S~"+tS"2-'-mS3+6S~"+4S~ -1-"} 
Then the cycle index for position isomers is given by (20) if n is even and by (2l) if n is 
odd. 

1 [ (n 2f12((n?)/2) 
Zn+-72.2n_ 2 Zc+6"2 ("-2)/2. 

p=O 

X io 2y'~2p+3r P-t'-"~C2PC((n-2)/2)--'~~ t"4 Pq~'6 +3S{22p+l)s~n-2)/2)-p+1} I (20) 

I (n-3)le{(n--l) /2)  1 Zc + 6"2 ("- 3)/2 y,  
Z. - 72"2"- 2 e = o 

f~2~2p+3~((n 3)/2)-p• ~_~2p+4~((n-3)/2)-p 

+,-4~2q2p+ l~((n-3)/2)-p+ l 2S(2P+ l)s((n 3 ) / 2 ) -  
~ 1~' 2 *~ + 2 4 PS6 

2C2p+2c((n--3)12) p+l}J (21) --'~ ~,P4 

The generating functions for position isomers can be obtained by replacing Sk by 
y~ ~ in (20) and (21) depending upon the parity of n. 

Example: Position Isomers of CBHvBr. 

Let n=3 and let S k - + ~  in (21). The coefficient of ~vc~ 2 in the resulting 
expression is 

1144 {(7 8 1 )+4(4  5 1 )+7(5  6 1)+ 16(2 3 1)+ 15(3 4 1)+4(1 2 1) 

+ 1 2 + 1 5 ( 1 2 1 ) + 1 2 ( 1 2 1 ) + 1 8 ( 1  21/j=l~']'~ 288=2 . 

The result can easily be verified. 
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2.5. Isomers o f  Polysubstituted Hydrocarbons 

In the section we use Read's result [4] for structural isomers for counting the stereo- 
isomers. For a compound with the formula Cn(tl)bl(tz)b2 . . .  (tl)bz, the number of 
double bonds and triple bonds is dependent on the factor 2n + 2 -521= 1 b~vi, where v~ 
is the valency of the functional group ti. It can be easily seen that the maximum 
number of double bonds is [(2n + 2 -  ~i v~bi)/2] (Ix] denotes the greatest integer 
contained in x). The maximum number of triple bonds will be [(2n + 2 -  Zivibi)/4]. 
The various combinations of double and triple bonds can be obtained by decreasing 
the number of double bonds from [-(2n + 2 - ~ i  vibO/2] to 0 or 1 in steps of 2 and 
simultaneously increasing the number of triple bonds in steps of 1 from 0. Read [4] 
enumerated the structures with a given combination of double and triple bonds. We 
obtain the stereo-graph for each structure taking into account the spatial symmetry 
of the constituting orbitats. For  example, a chemical graph and its stereo-projection 
are shown in Fig. 4. The internal rotations are observed only around carbon-carbon 
single bonds as a consequence of the high energy barrier to rotation around double 
bonds. We emphiasize that the structure should be projected in all possible non- 
equivalent ways. For  an enantiomeric graph there can be more than one stereo- 
projection. The isomers are enumerated analogous to the treatment given in 
Sect. 2.4. 

Example. Isomers of C6HloBr2C12 . 

We illustrate the preceding discussion by enumerating the stereo-position isomers 
of C6Ht0BrzClz. It can be seen that 

2n + 2 - ~ rib i = O. 
i 

Thus, we first enumerate the saturated graphs containing six vertices. Each of them 
is projected in space and the corresponding point group is identified. Fig. 4 shows 
the graph of the structure 5 in Table 1 and its stereo-projection. To enumerate the 
stereo-position isomers of the corresponding polysubstituted compounds, we let 
G = C3, H1 = C3, and H 2 = E 2 . The cycle index of the resulting wreath product is 
given by (22). 

__ 1 14 1 +24S~S 2 s 3 4 2 Z u - ~ ( S ,  +8Sl lS3  +32SAS3+ 16S3S1 
5 3 2 4- + 18S1S3 + 36S1S3 + 36S~sS9 +72S~$3S9)  (22) 

The coefficient of c~{ 0~2e~ in the appropriate pattern inventory, which is the number 
of isomers of C6H 1 oBrzC12, can be seen to be 142. If we let G = C3 v the coefficient of 
,*0NZN2 becomes 110. Thus the number of enantiomer pairs is ~-1 ~ 2 ~ 3  

142 -  110=32. 

The results for the isomers ofC6HloBr2Cl 2 and C6H13Br as obtained from the same 
pattern inventory are given in Table 1. The results on the isomers of C 6 H  13Br  can be 
easily verified. 
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3. Application to NMR spectroscopy 

We devote this section to the application of the generalized wreath product method 
to NMR spectroscopy. 

3.1. Mathematical Formulation of  the Problem 

We give a method here for partitioning the protons (or in general any nuclei) into 
equivalence classes induced by the generalized wreath product. Consider the 
molecule CH3-CHCI. CHzC1 whose stereo-projection is shown in Fig. 6. All the 

Fig. 6. The molecular stereograph of CH 3 . CHC1-CH2C1. 
The vertices which correspond to the protons are treated as 
unspecified and they carry the labels 1, 2, 3, 4, 5 and 6 

4 C~ 

2 3 6 CL 

vertices other than theprotons are considered to be specifiedchemically, while proton 
resonance is under consideration. Thus the vertices that correspond to the carbon 
and chlorine atoms are specified in the molecule CH3-CHC1. CHzC1. 

The molecular stereograph of the given molecule is expressed as the root-to-root 
product, the carbon atoms being the roots. Thus, for the molecule 
CH3. CHC1. CH2C1, the quotient stereograph Q and the various types are shown in 
Fig. 7. Let G be the point group of the stereograph Q. Let the permutations induced 
by the carbon--carbon internal rotations be expressed as the groups Ha, H z . . .  

CL 
Q 

Fig. 7. The Quotient graph Q and the various types of the 
molecular stereo-product of CHa- CHCI. CH2CI 

zl 

5 

\ 
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acting on the types TI, T2 �9 �9 �9 respectively. Note that all improper rotations are also 
included in G[H~,//2. �9 .] since enantiotopic protons cannot be distinguished in 
N M R  spectra. Let D be the set of  chemically unspecified vertices of the root-to-root 
product. Let R be a set consisting of two elements, namely the proton and a group Z. 
Let us define a map f~ from the set D to R as follows: 

f~(dk)={ Z i f k = i  
if k~=i 

where dk ~ D. Let the weights ~ and 72 be assigned to the proton and the group Z 
respectively. Then the weight of the map, as defined above, is 

W = ~ n -  10~2 

where m = IDI. Let ~-w denote the set of  all such maps from D to R. Note that 

lYwl=lDI--m. 

In the above set-up two protons Hi and Hj (where the labels i and j  refer to the labels 
of the corresponding chemically unspecified vertices of the root-to-root product) 
are magnetically equivalent if there exists a • ~ G[H~, HE �9 �9 .] such that 

f~(4) =fi(~4) 
for every dk in D. 

The relation thus defined on ~-w is clearly an equivalence relation. Therefore, 
G[H1, H2 . . . ]  divides Y,~ into equivalence classes. 

Theorem 3: The wreath product equivalence classes of Yw are the partitions of the 
magnetically non-equivalent protons. Thus, the number of  classes into which the 
protons are partitioned is the cardinality of the wreath product equivalence classes 
of ~,~. 

Proof: Given two functionsfi andfj  we can determine the protons H i and Hj. This is 
a consequence of the fact that f~ takes all dk'S in D to H excepting the vertex dl. This 
indeed corresponds to Hi of the given molecule. Thus H i is determined. Conversely, 
given an H i and an Hj we can find those functions in Yw that take d i and dj to Z. 
Thus, the correspondence is one-to-one. Further, b y  the very definition of  the 
equivalence relation on the set of  functions, if the functions are equivalent then the 
protons are also magnetically equivalent. Hence, the result follows. 

In this sense the six protons of the molecule CHa-CHCI'CH2C1 (see Fig. 6) are 
partitioned into the following wreath product equivalent classes. 

{1, 2, 3}, {4}, {5}, {6}. 

Theorem 4: The number of classes into which the protons are partitioned is given by 
the coefficient of ~ ' -  10{ 2 in the pattern inventory. 

Theorem 4 is a direct consequence of Polya's theorem, since the coefficient of 
0{] n -  10{ 2 in the pattern inventory gives the number of patterns with the weight 
O~ln - -  10~ 2 . 
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Example. Consider the molecule CH3. CHC1. CH2C1. 

It can be seen that G = Es, Ht = C3, H2 = E1 and H3 = E2. Hence the cycle index is 
given by Eq. (23) 

1 6 Za~.,. n~, u~3 = ~(S t + 2S ~ 83) (23) 

The inventory of NMR signals or NMR inventory is given by (24). 

P(~,, c~2) =�89 + cq) 6 + 2(cq + a2)3(~ + c~)] (24) 

The coefficient of a~a 2 in (24) is 

The fact that the NMR spectrum of the molecule C H  3 �9 CHC1. CHaC1 contains four 
signals is well known to chemists but here we have an elegant and general approach 
to any compound. This method has the additional advantage that it has eliminated 
the enantiotopic protons and identified them as equivalent. However, the diaste- 
reotopic protons are considered non-equivalent which corresponds to reality too ! 

4. Conclusion 

In this paper I gave a rigorous mathematical approach for enumerating stereo 
isomers, and subsequently, for enumerating NMR signals. Even though the 
generalized wreath product group was developed in this paper in the context of 
isomer enumeration, it is interesting to note that it is a generalization of the results 
of Longnet-Higgins [ 17] and Woodman [ 18] for the groups of non-rigid molecules. 
The author [19] recently applied the generalized wreath product method further to 
the enumeration of stable stereo and position isomers ofpolysubstituted alcohols by 
incorporating the principle of inclusion and exclusion. A collection of a few open 
problems in isomer enumeration can be found in [20]. The representation theory of 
generalized wreath product groups was recently developed by the author. The 
manuscript is being submitted for publication. Further applications of the methods 
developed here to the enumeration of internal rotation reactions and spontaneous 
generation of optical activity can be found in [21]. 
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